OptiCPD: Optimization For The Canonical Polyadic Decomposition Algorithm on GPUs

Srinivasan Subramaniyan, Xiaorui Wang

The Ohio State University

May 15, 2023

Overview

(1) Background
(2) Algorithm Design
(3) Experiment and Results
(4) Conclusion \& Future Work

What are Tensors?

- Tensors are representations of multidimensional array.
- A first-order tensor is a vector.

Figure 1: Tensor Representation across different modes

What are Tensors?

Figure 1: Tensor Representation across different modes

- Tensors are representations of multidimensional array.
- A first-order tensor is a vector.
- A second-order tensor is a matrix.
- Tensors of order three or higher are called higher-order tensors.

Where are Tensors used?

amazon.
 WETFLIX

- Used in many applications like
- Machine Learning
- Recommend-er systems
- Neural networks
- Psychometric
- Chemo-metrics \& Fluid Mechanics

Tensor Annotations

Table 1: Tensor Elucidations

Representation	Elucidation
X	Tensor
M	Matrix
R	Rank
N	Tensor Order
v	Vector
$\mathrm{X}_{i j k}$	Tensor in $\mathrm{i}, \mathrm{j}, \mathrm{k}$ dimensions
S	Slices
F	Fibres

Figure 2: Representation of a Tensor across different modes.

Matricization

$$
\begin{aligned}
& X(:: 1)=\left[\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right] \\
& X(:: 2)=\left[\begin{array}{ll}
6 & 8 \\
7 & 9
\end{array}\right] \\
& X_{1}=\left[\begin{array}{llll}
2 & 4 & 6 & 8 \\
3 & 5 & 7 & 9
\end{array}\right] \\
& X_{2}=\left[\begin{array}{llll}
2 & 3 & 6 & 7 \\
4 & 5 & 8 & 9
\end{array}\right] \\
& X_{3}=\left[\begin{array}{llll}
2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9
\end{array}\right]
\end{aligned}
$$

- Matricization, also known as unfolding or flattening, is the process of reordering the elements of an n-dimensional array into a matrix.
- For instance, a $2 \times 3 \times 4$ tensor can be arranged as a 6×4 matrix or a $3 x$ 8 matrix.
The mode n matricization of a tensor $X \in R^{11 \times 12 \times 13}$ is represented as X_{n}.

Kronecker Product

- The Kronecker product of matrices $A \in \mathbb{R}^{I \times J}$ and $B \in \mathbb{R}^{K \times L}$ is denoted by $A \otimes B$. The resultant matrix is of the size $(I K) \times(J L)$.

$$
A \otimes B=\left[\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 J} B \\
a_{21} B & a_{22} B & \ldots & a_{2 J} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{l 1} B & a_{12} B & \ldots & a_{1 J} B
\end{array}\right]
$$

or equivalently,
$A \otimes B=\left[\begin{array}{lllll}a_{1} \times b_{1} & a_{1} \otimes b_{2} & \ldots & a_{J} \otimes b_{L-1} & a_{J} \otimes b_{L}\end{array}\right]$

Example of Kronecker Product

Given two matrices A and B the Kronecker Product for them is defined below.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \\
A \otimes B=\left[\begin{array}{llll}
1 \cdot 5 & 1 \cdot 6 & 2 \cdot 5 & 2 \cdot 6 \\
1 \cdot 7 & 1 \cdot 8 & 2 \cdot 7 & 2 \cdot 8 \\
3 \cdot 5 & 3 \cdot 6 & 4 \cdot 5 & 4 \cdot 6 \\
3 \cdot 7 & 3 \cdot 8 & 4 \cdot 7 & 4 \cdot 8
\end{array}\right]
\end{gathered}
$$

Hadamard Product

- The Hadamard product is the element-wise matrix product. Given matrices A and B, both of size $I \times J$, their Hadamard product is denoted by $A \odot B$.

$$
A \odot B=\left[\begin{array}{cccc}
a_{11} b_{11} & a_{12} b_{12} & \ldots & a_{1 J} b_{1 J} \\
a_{21} b_{21} & a_{22} b_{22} & \ldots & a_{2 J} b_{2 J} \\
\vdots & \vdots & \ddots & \vdots \\
a_{l 1} b_{l 1} & a_{l 2} b_{l 2} & \ldots & a_{l J} b_{l J}
\end{array}\right]
$$

Example for Hadamard Product

Suppose we have matrices A and B, where:

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], B=\left[\begin{array}{ccc}
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right] \\
A \odot B=\left[\begin{array}{ccc}
1 \cdot 7 & 2 \cdot 8 & 3 \cdot 9 \\
4 \cdot 10 & 5 \cdot 11 & 6 \cdot 12
\end{array}\right]=\left[\begin{array}{ccc}
7 & 16 & 27 \\
40 & 55 & 72
\end{array}\right]
\end{gathered}
$$

Khatri Rao Product

- The Khatri-Rao product is the "matching column-wise" Kronecker product.
- If a and b are vectors, then the Khatri-Rao and Kronecker products are identical $a \otimes b=a \odot b$.
- Given matrices $A \in \mathbb{R}^{I \times K}$ and $B \in \mathbb{R}^{J \times K}$, their Khatri-Rao product is denoted by $A \odot B$. The result is a matrix of size $(I J) \times K$ and defined by $\left[\begin{array}{c}a_{1} \otimes b_{1} \\ a_{2} \otimes b_{2} \\ \vdots \\ a_{K} \otimes b_{K}\end{array}\right]$

Example of Khatri Rao Product

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
5 & 6
\end{array}\right] \\
A \odot B=\left[\begin{array}{cc}
7 \cdot 1 & 8 \cdot 2 \\
7 \cdot 3 & 8 \cdot 4 \\
9 \cdot 1 & 10 \cdot 2 \\
9 \cdot 3 & 10 \cdot 4 \\
5 \cdot 1 & 6 \cdot 2 \\
5 \cdot 3 & 6 \cdot 4
\end{array}\right]=\left[\begin{array}{cc}
7 & 16 \\
21 & 32 \\
9 & 20 \\
27 & 40 \\
5 & 12 \\
15 & 24
\end{array}\right]
\end{gathered}
$$

MTTKRP

- Mode-0 MTTKRP: $G_{i, r}=\sum_{j=1}^{J} \sum_{k=1}^{K} X_{i j k} V_{j r} W_{k r}$
- Mode-1 MTTKRP: $G_{j, r}=\sum_{i=1}^{1} \sum_{k=1}^{K} X_{i j k} U_{i r} W_{k r}$
- Mode-2 MTTKRP: $G_{k, r}=\sum_{i=1}^{1} \sum_{j=1}^{J} X_{i j k} U_{i r} V_{j r}$
- Here R is the rank of the matrix $1 \leq r \leq R$, and $U_{i r}, V_{j r}$, and $W_{k r}$ are the factor matrices for mode-0, mode-1, and mode-2, respectively.

HIP Graphs

Figure 3: Comparision of Hip-Graphs vs Regular kernel launches.

- Graph launch submits all work at once, reducing CPU cost.
- Release CPU Time For Lower Power, or Running Other Work
- Efficient way to express dependency
- Reduce Launch latency

Overview

(1) Background
(2) Algorithm Design
(3) Experiment and Results
(4) Conclusion \& Future Work

CPD-ALS

- CPD (Canonical Polyadic Decomposition) is different from other decomposition's.
- SVD (Singular Value Decomposition) can only be used if tensors are flattened to a matrix
- NMF (Non-negative matrix Factorization (NMF))is used for decomposing matrices and show a significant performance improvement for smaller matrices.
- CPD-PARAFAC ALS has the ability to perform decomposition even if some data samples are absent.

CPD-ALS (contd)

Algorithm 1 CPD-ALS Algorithm

Input Tensor: $X \in \mathbb{R}^{I \times J \times K}$
Dense Matrices : $A, B, C \in \mathbb{R}$
for iter $\leftarrow 1 n$ do

$$
\begin{aligned}
& \hat{A}=X_{1}(C \odot B)\left(B^{T} B * C^{T} C\right)^{\dagger} \\
& \hat{B}=X_{2}(A \odot C)\left(A^{T} A * C^{T} C\right)^{\dagger} \\
& \hat{C}=X_{3}(A \odot B)\left(A^{T} A * B^{T} B\right)^{\dagger}
\end{aligned}
$$

Convergence of \hat{A}, \hat{B} and \hat{C}.

- The CPD decomposes an Nth-order tensor into a sum of R rank-one tensors.
- The tensors can be decomposed as $X \approx \lambda_{r} a_{r}(\circ) b_{r}(\circ) c_{r}=[[\lambda ; A, B, C]]$
- We compute the difference between the original tensor and the approximate value $\|X-\hat{X}\|$ in each iteration
- Continued till convergence or max iterations.

Mode 0 Analysis

Figure 4: Mode 0 analysis of the CPD Decomposition.

Are GEMMs a bottleneck?

- GEMMs are usually performed by Vendor specific BLAS Libraries
- High GFLOPS \leftarrow Regular matrix.
- Poor Performance for tall and wide matrices $A \in R^{I \times J} I \gg J$ or $J \ll I$
- There is no optimization specifically designed for different architectures.

Baseline

Figure 5：Baseline：Dataflow representation of the CPD／PARAFAC－ALS Algorithm using a third order tensor for a single iteration．
－Two GEMM operations must be computed for each mode．
－No reuse of partially computed GEMMs．
－For n iterations for a 3rd order tensor $\leftarrow 2 n \times n$ GEMMs \qquad

Optimization 1 \& Optimization 2

Figure 7: Optimization /I

OptiCPD

```
Algorithm 2 OptiCPD algorithm
Input Tensor: \(X \in \mathbb{R}^{I \times J \times K}\)
for tensor in Dataset do
    if \(\alpha \gg 2.5\) then (Optimization2);
        if \(\alpha \ll 0.5\) then (Optimization1);
        if \(\alpha \ll 2.5\) and \(\alpha \gg 0.5\) then
            if \(I \gg J * K\) or \(J \gg I * K\) or \(K \gg\)
\(J * I\) then (Optimization2);
    else (Optimization1);
```

- The choice of α was device specific and was specific to the device and the BLAS libraries.
- The value of alpha was determined by performing regression analysis on multiple tensors under various conditions.

Overview

(1) Background
(2) Algorithm Design
(3) Experiment and Results
(4) Conclusion \& Future Work

Benchmark Tensors

Serial No	Tensor Name	Dimension	Size (GB)
I	Chicago	$6186 \times 24 \times 77 \times 32$	0.077
II	Enron	$6066 \times 5699 \times 244268 \times 1176$	1.2
III	Nell-1	$2902330 \times 2143368 \times 25495389$	3.8
IV	Nell-2	$12092 \times 9184 \times 28818$	1.5
V	Nips	$2482 \times 2862 \times 14036 \times 17$	0.057
VI	Darpa	$22476 \times 22476 \times 23776223$	0.575
VII	Freebase_music	$23344784 \times 23344784 \times 166$	2.0
VIII	Freebase_sampled	$38955429 \times 38955429 \times 532$	2.9
IX	Uber	$183 \times 24 \times 1140 \times 1717$	0.052
X	Synthetic 1	$200 \mathrm{~K} \times 80 \mathrm{~K} \times 16 \mathrm{~K}$	9.0
XI	Synthetic 2	$400 \mathrm{~K} \times 80 \mathrm{~K} \times 8 \mathrm{~K}$	9.0
XII	Synthetic 3	$800 \mathrm{~K} \times 40 \mathrm{~K} \times 8 \mathrm{~K}$	9.0
XIII	Synthetic 4	$800 \mathrm{~K} \times 20 \mathrm{~K} \times 16 \mathrm{~K}$	9.0

Experimental Setup

- Intel(R) Xeon(R) Gold 5215 CPU running at 2.20 GHz with the MI-100 GPU.
- ROCM stack 5.3.0
- The FROSTT benchmarks Smith et al. (2017), the tensors from the Haten dataset Jeon et al. (2015) Jeon et al. (2016) and certain synthetic tensors were used for the experiments.
- The synthetic tensors a generated using the Gaussian random process with a zero mean and variance one.
- The MI-100 GPU has a maximum DRAM capacity of 32 GB .
- The number of iterations was set to 5 .

Experiment 1: Variation of execution time for all the techniques

Figure 8: Variation of the overall execution time of the benchmark tensors for the CPD/PARAFAC-ALS for the baseline and the proposed optimization techniques.

- Optimization 1 shows good performance for benchmark tensors $I, I I V$ and $I X$.
- The use of hip-graphs allows for fine-grained task scheduling and parallelism.
- The delay caused by GEMM operations is masked by dividing the workload into smaller tasks and using dedicated streams for computation.

Experiment 2 :A detailed breakdown of execution time

Figure 9: Variation of the execution time of the benchmark tensors for the three design techniques. The bar plot contains the split-up time for the Inverse, GEMM, and MTTKRP operation in the CPD/PARAFAC-ALS toolchain.

- It is to be noted that the GEMM operations are consuming a lot of GPU resources.
- GEMMs Performed using optimization 2 show less latency.

Experiment 3 :Performance Analysis of OptiCPD

Figure 10: Variation of the overall execution time of the benchmark tensors for the baseline implementation and OptiCPD.

- OptiCPD achieves a speedup of more than $2.35 x$ for tensor benchmark I,20.37x for tensor benchmark II.
- For Large tensors OptiCPD uses Optimization 2 to mask the latency caused by GEMM operation.
- For Small tensors OptiCPD performs better because less time is spent on the synchronization wait and the overhead caused by small streams.

Overview

(1) Background
(2) Algorithm Design
(3) Experiment and Results
(4) Conclusion \& Future Work

Conclusion \& Future Work

- OptiCPD achieved an average speedup of $7.5 x$.
- Planning to work on architectural optimization for improving CPD-ALS.
- Will investigate the division of work for CPD-ALS to CPUs and GPUs.

References I

Inah Jeon, Evangelos E. Papalexakis, U Kang, and Christos Faloutsos. Haten2: Billionscale tensor decompositions. In IEEE International Conference on Data Engineering (ICDE), 2015.
Inah Jeon, Evangelos E. Papalexakis, Christos Faloutsos, Lee Sael, and U Kang. Mining billion-scale tensors: Algorithms and discoveries. In The International Journal on Very Large Data Bases (VLDB), 2016.
Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George Karypis. FROSTT: The formidable repository of open sparse tensors and tools, 2017. URL http://frostt.io/.

