
Background Algorithm Design Experiment and Results Conclusion & Future Work References

OptiCPD: Optimization For The Canonical Polyadic
Decomposition Algorithm on GPUs

Srinivasan Subramaniyan, Xiaorui Wang

The Ohio State University

May 15, 2023

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 1 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Overview

1 Background

2 Algorithm Design

3 Experiment and Results

4 Conclusion & Future Work

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 2 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

What are Tensors?

Vector Matrix Tensor

Figure 1: Tensor Representation across different modes

▶ Tensors are representations of
multidimensional array.

▶ A first-order tensor is a
vector.

▶ A second-order tensor is a
matrix.

▶ Tensors of order three or
higher are called higher-order
tensors.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 3 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

What are Tensors?

Vector Matrix Tensor

Figure 1: Tensor Representation across different modes

▶ Tensors are representations of
multidimensional array.

▶ A first-order tensor is a
vector.

▶ A second-order tensor is a
matrix.

▶ Tensors of order three or
higher are called higher-order
tensors.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 3 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Where are Tensors used?

▶ Used in many applications like

▶ Machine Learning
▶ Recommend-er systems
▶ Neural networks
▶ Psychometric
▶ Chemo-metrics & Fluid

Mechanics

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 4 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Tensor Annotations

Table 1: Tensor Elucidations

Representation Elucidation

X Tensor

M Matrix

R Rank

N Tensor Order

v Vector

Xi j k Tensor in i,j,k dimensions

S Slices

F Fibres

Tensor

Slices

Fibers

Figure 2: Representation of a Tensor
across different modes.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 5 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Matricization

▶ Matricization, also known as unfolding
or flattening, is the process of
reordering the elements of an
n-dimensional array into a matrix.

▶ For instance, a 2 × 3 × 4 tensor can
be arranged as a 6 × 4 matrix or a 3 x
8 matrix.

▶ The mode n matricization of a tensor
X ∈ R I1×I2×I3 is represented as Xn.

X (:: 1) =

[
2 4
3 5

]
X (:: 2) =

[
6 8
7 9

]

X1 =

[
2 4 6 8
3 5 7 9

]

X2 =

[
2 3 6 7
4 5 8 9

]
X3 =

[
2 3 4 5
6 7 8 9

]

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 6 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Kronecker Product

▶ The Kronecker product of
matrices A ∈ RI×J and
B ∈ RK×L is denoted by
A⊗ B. The resultant matrix
is of the size (IK)× (JL).

A⊗ B =


a11B a12B . . . a1JB
a21B a22B . . . a2JB
...

...
. . .

...
aI1B aI2B . . . aIJB


or equivalently,

A⊗B =
[
a1 × b1 a1 ⊗ b2 . . . aJ ⊗ bL−1 aJ ⊗ bL

]

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 7 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Example of Kronecker Product

Given two matrices A and B the Kronecker Product for them is defined below.

A =

[
1 2
3 4

]
, B =

[
5 6
7 8

]

A⊗ B =


1 · 5 1 · 6 2 · 5 2 · 6
1 · 7 1 · 8 2 · 7 2 · 8
3 · 5 3 · 6 4 · 5 4 · 6
3 · 7 3 · 8 4 · 7 4 · 8



Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 8 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Hadamard Product

▶ The Hadamard product is the
element-wise matrix product.
Given matrices A and B, both
of size I × J, their Hadamard
product is denoted by A⊙ B. A⊙ B =


a11b11 a12b12 . . . a1Jb1J
a21b21 a22b22 . . . a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 . . . aIJbIJ



Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 9 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Example for Hadamard Product

Suppose we have matrices A and B, where:

A =

[
1 2 3
4 5 6

]
, B =

[
7 8 9
10 11 12

]

A⊙ B =

[
1 · 7 2 · 8 3 · 9
4 · 10 5 · 11 6 · 12

]
=

[
7 16 27
40 55 72

]

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 10 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Khatri Rao Product

▶ The Khatri-Rao product is the ”matching column-wise” Kronecker product.

▶ If a and b are vectors, then the Khatri-Rao and Kronecker products are identical
a⊗ b = a⊙ b.

▶ Given matrices A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao product is denoted by

A⊙ B. The result is a matrix of size (IJ)× K and defined by


a1 ⊗ b1
a2 ⊗ b2

...
aK ⊗ bK



Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 11 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Example of Khatri Rao Product

A =

[
1 2
3 4

]
, B =

7 8
9 10
5 6



A⊙ B =



7 · 1 8 · 2
7 · 3 8 · 4
9 · 1 10 · 2
9 · 3 10 · 4
5 · 1 6 · 2
5 · 3 6 · 4

 =



7 16
21 32
9 20
27 40
5 12
15 24



Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 12 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

MTTKRP

▶ Mode-0 MTTKRP: Gi ,r =
J∑

j=1

K∑
k=1

XijkVjrWkr

▶ Mode-1 MTTKRP: Gj ,r =
I∑

i=1

K∑
k=1

XijkUirWkr

▶ Mode-2 MTTKRP:Gk,r =
I∑

i=1

J∑
j=1

XijkUirVjr

▶ Here R is the rank of the matrix 1 ≤ r ≤ R, and Uir , Vjr , and Wkr are the factor
matrices for mode-0, mode-1, and mode-2, respectively.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 13 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

HIP Graphs

MTTKRP GEMM GEMM GETRI

MTTKRP GEMM GEMM GETRI

Build a
Graph

Launch the
Graph

MTTKRP GEMM GETRIGEMM

Time
saved

HOST

DEVICE

Kernel Launches from the host

Latency

HOST

Figure 3: Comparision of Hip-Graphs vs Regular kernel
launches.

▶ Graph launch submits all
work at once, reducing
CPU cost.

▶ Release CPU Time For
Lower Power, or Running
Other Work

▶ Efficient way to express
dependency

▶ Reduce Launch latency

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 14 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Overview

1 Background

2 Algorithm Design

3 Experiment and Results

4 Conclusion & Future Work

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 15 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

CPD-ALS

▶ CPD (Canonical Polyadic Decomposition) is different from other decomposition’s.

▶ SVD (Singular Value Decomposition) can only be used if tensors are flattened to a
matrix

▶ NMF (Non-negative matrix Factorization (NMF))is used for decomposing
matrices and show a significant performance improvement for smaller matrices.

▶ CPD-PARAFAC ALS has the ability to perform decomposition even if some data
samples are absent.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 16 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

CPD-ALS (contd)

Algorithm 1 CPD-ALS Algorithm

Input Tensor: X ∈ RI×J×K

Dense Matrices :A,B,C ∈ R
for iter ← 1 n do

Â = X1(C ⊙ B)(BTB ∗ CTC)†

B̂ = X2(A⊙ C)(ATA ∗ CTC)†

Ĉ = X3(A⊙ B)(ATA ∗ BTB)†

Convergence of Â, B̂ and Ĉ .

▶ The CPD decomposes an Nth-order
tensor into a sum of R rank-one
tensors.

▶ The tensors can be decomposed as
X ≈ λrar (◦)br (◦)cr = [[λ;A,B,C]]

▶ We compute the difference between
the original tensor and the
approximate value ||X − X̂ || in each
iteration

▶ Continued till convergence or max
iterations.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 17 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Mode 0 Analysis

MTTKRP

GEMM

GEMM

Inverse

Dense
Matrix B

J x R

R x J

R x R

R x R

Dense
Matrix C

GEMM

R x K

K x RR x R

GEMM
R x R

I x R

I x R

J x R
K x R

Sparse
Tensor

I x J x K x
Sparsity

Figure 4: Mode 0 analysis of the CPD Decomposition.

▶ T total = T mttkrp +
T Gemm + T inverse.

▶ Matrix
multiplications:GEMMs.

▶ Inverse : LU
Decomposition.

▶ MTTKRP: Custom Cuda
kernel

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 18 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Are GEMMs a bottleneck?

3 x 6186 3 *238K 3*24M 3 *38M
10

-2

10
-1

10
0

10
1

10
2

10
3

G
F

L
O

P
S ▶ GEMMs are usually performed by

Vendor specific BLAS Libraries

▶ High GFLOPS ← Regular matrix.

▶ Poor Performance for tall and wide
matrices A ∈ R I×J I >> J or J << I

▶ There is no optimization specifically
designed for different architectures.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 19 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Baseline

MTTKRP
GEMM

GEMM

GETRI

GEMM

Mode 1

MTTKRP GEMM

GEMM

GETRI

GEMM

Mode 2

GEMMMTTKRP

GEMM GEMM

GEMM

GETRI

Mode 0

GEMM

X

GEMM

C B

Figure 5: Baseline: Dataflow representation of the
CPD/PARAFAC-ALS Algorithm using a third order
tensor for a single iteration.

▶ Two GEMM operations must
be computed for each mode.

▶ No reuse of partially
computed GEMMs.

▶ For n iterations for a 3rd
order tensor ← 2n × n
GEMMs .

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 20 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Optimization 1 & Optimization 2

MTTKRP GEMM

GEMM

GETRI

GEMM

Mode 1

MTTKRP GEMM

GEMM

GETRI

GEMM

Mode 2

MTTKRP

GEMM GEMM

GEMM

GETRI

Mode 0

GEMM

X C B

Figure 6: Optimization I

MTTKRP

GEMM

GEMM

GEMM

GEMM

GETRI

Stream 1

Stream 2

Figure 7: Optimization II

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 21 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

OptiCPD

Algorithm 2 OptiCPD algorithm

Input Tensor: X ∈ RI×J×K

for tensor in Dataset do

if α >> 2.5 then (Optimization2);

if α << 0.5 then (Optimization1);

if α << 2.5 and α >> 0.5 then

if I >> J ∗K or J >> I ∗K or K >>
J ∗ I then (Optimization2);

else (Optimization1);

▶ The choice of α was device
specific and was specific to
the device and the BLAS
libraries.

▶ The value of alpha was
determined by performing
regression analysis on
multiple tensors under various
conditions.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 22 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Overview

1 Background

2 Algorithm Design

3 Experiment and Results

4 Conclusion & Future Work

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 23 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Benchmark Tensors

Serial No Tensor Name Dimension Size (GB)

I Chicago 6186 x 24 x77 x 32 0.077

II Enron 6066 x 5699 x 244268 x 1176 1.2

III Nell-1 2902330 x 2143368 x 25495389 3.8

IV Nell-2 12092 x 9184 x 28818 1.5

V Nips 2482 x 2862 x 14036 x 17 0.057

VI Darpa 22476 x 22476 x 23776223 0.575

VII Freebase music 23344784 x 23344784 x 166 2.0

VIII Freebase sampled 38955429 x 38955429 x 532 2.9

IX Uber 183 x 24 x 1140 x 1717 0.052

X Synthetic 1 200K x 80K x 16K 9.0

XI Synthetic 2 400K x 80K x 8K 9.0

XII Synthetic 3 800K x 40K x 8K 9.0

XIII Synthetic 4 800K x 20K x 16K 9.0

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 24 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Experimental Setup

▶ Intel(R) Xeon(R) Gold 5215 CPU running at 2.20GHz with the MI-100 GPU.

▶ ROCM stack 5.3.0

▶ The FROSTT benchmarks Smith et al. (2017), the tensors from the Haten
dataset Jeon et al. (2015) Jeon et al. (2016) and certain synthetic tensors were
used for the experiments.

▶ The synthetic tensors a generated using the Gaussian random process with a zero
mean and variance one.

▶ The MI-100 GPU has a maximum DRAM capacity of 32 GB.

▶ The number of iterations was set to 5.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 25 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Experiment 1: Variation of execution time for all the techniques

I II III IV V VI VII VIII IX X XI XII XIII

Tensors

10
2

10
3

10
4

10
5

10
6

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Baseline

Optimization 1

Optimization 2

Figure 8: Variation of the overall execution time of the
benchmark tensors for the CPD/PARAFAC-ALS for the
baseline and the proposed optimization techniques.

▶ Optimization 1 shows good
performance for benchmark
tensors I , II V and IX .

▶ The use of hip-graphs allows
for fine-grained task
scheduling and parallelism.

▶ The delay caused by GEMM
operations is masked by
dividing the workload into
smaller tasks and using
dedicated streams for
computation.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 26 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Experiment 2 :A detailed breakdown of execution time

I II III IV V VI VII VIII IX X XI XII XIII

Tensors

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

E
x
e
c
u
ti
o
n
 t
im

e
s
 (

n
s
)

Inverse Baseline Inverse Optimization I Inverse Optimization II GEMM Baseline GEMM Optimization I GEMM Optimization II MTTKRP Baseline MTTKRP Optimization I MTTKRP Optimization II

Figure 9: Variation of the execution time of the benchmark tensors for the three design
techniques. The bar plot contains the split-up time for the Inverse, GEMM, and MTTKRP
operation in the CPD/PARAFAC-ALS toolchain.

▶ It is to be noted that the GEMM operations are consuming a lot of GPU resources.
▶ GEMMs Performed using optimization 2 show less latency.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 27 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Experiment 3 :Performance Analysis of OptiCPD

I II III IV V VI VII VIII IX X XI XII XIII

Tensors

10
2

10
3

10
4

10
5

10
6

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Baseline

OptiCPD

Figure 10: Variation of the overall execution time of the
benchmark tensors for the baseline implementation and
OptiCPD.

▶ OptiCPD achieves a speedup
of more than 2.35x for tensor
benchmark I,20.37x for tensor
benchmark II.

▶ For Large tensors OptiCPD
uses Optimization 2 to mask
the latency caused by GEMM
operation.

▶ For Small tensors OptiCPD
performs better because less
time is spent on the
synchronization wait and the
overhead caused by small
streams.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 28 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Overview

1 Background

2 Algorithm Design

3 Experiment and Results

4 Conclusion & Future Work

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 29 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

Conclusion & Future Work

▶ OptiCPD achieved an average speedup of 7.5x.

▶ Planning to work on architectural optimization for improving CPD-ALS.

▶ Will investigate the division of work for CPD-ALS to CPUs and GPUs.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 30 / 31

Background Algorithm Design Experiment and Results Conclusion & Future Work References

References I

Inah Jeon, Evangelos E. Papalexakis, U Kang, and Christos Faloutsos. Haten2: Billion-
scale tensor decompositions. In IEEE International Conference on Data Engineering
(ICDE), 2015.

Inah Jeon, Evangelos E. Papalexakis, Christos Faloutsos, Lee Sael, and U Kang. Mining
billion-scale tensors: Algorithms and discoveries. In The International Journal on Very
Large Data Bases (VLDB), 2016.

Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. FROSTT: The formidable repository of open sparse tensors and
tools, 2017. URL http://frostt.io/.

Srinivasan Subramaniyan, Xiaorui Wang The Ohio State University 31 / 31

http://frostt.io/

	Background
	Algorithm Design
	Experiment and Results
	Conclusion & Future Work
	References

