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What are Tensors?

Vector Matrix Tensor

Figure 1: Tensor Representation across different modes

▶ Tensors are representations of
multidimensional array.

▶ A first-order tensor is a
vector.

▶ A second-order tensor is a
matrix.

▶ Tensors of order three or
higher are called higher-order
tensors.
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Where are Tensors used?

▶ Used in many applications like

▶ Machine Learning
▶ Recommend-er systems
▶ Neural networks
▶ Psychometric
▶ Chemo-metrics & Fluid

Mechanics
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Tensor Annotations

Table 1: Tensor Elucidations

Representation Elucidation

X Tensor

M Matrix

R Rank

N Tensor Order

v Vector

Xi j k Tensor in i,j,k dimensions

S Slices

F Fibres

Tensor

Slices

Fibers

Figure 2: Representation of a Tensor
across different modes.
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Matricization

▶ Matricization, also known as unfolding
or flattening, is the process of
reordering the elements of an
n-dimensional array into a matrix.

▶ For instance, a 2 × 3 × 4 tensor can
be arranged as a 6 × 4 matrix or a 3 x
8 matrix.

▶ The mode n matricization of a tensor
X ∈ R I1×I2×I3 is represented as Xn.

X (:: 1) =

[
2 4
3 5

]
X (:: 2) =

[
6 8
7 9

]

X1 =

[
2 4 6 8
3 5 7 9

]

X2 =

[
2 3 6 7
4 5 8 9

]
X3 =

[
2 3 4 5
6 7 8 9

]
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Kronecker Product

▶ The Kronecker product of
matrices A ∈ RI×J and
B ∈ RK×L is denoted by
A⊗ B. The resultant matrix
is of the size (IK )× (JL).

A⊗ B =


a11B a12B . . . a1JB
a21B a22B . . . a2JB
...

...
. . .

...
aI1B aI2B . . . aIJB


or equivalently,

A⊗B =
[
a1 × b1 a1 ⊗ b2 . . . aJ ⊗ bL−1 aJ ⊗ bL

]
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Example of Kronecker Product

Given two matrices A and B the Kronecker Product for them is defined below.

A =

[
1 2
3 4

]
, B =

[
5 6
7 8

]

A⊗ B =


1 · 5 1 · 6 2 · 5 2 · 6
1 · 7 1 · 8 2 · 7 2 · 8
3 · 5 3 · 6 4 · 5 4 · 6
3 · 7 3 · 8 4 · 7 4 · 8


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Hadamard Product

▶ The Hadamard product is the
element-wise matrix product.
Given matrices A and B, both
of size I × J, their Hadamard
product is denoted by A⊙ B. A⊙ B =


a11b11 a12b12 . . . a1Jb1J
a21b21 a22b22 . . . a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 . . . aIJbIJ


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Example for Hadamard Product

Suppose we have matrices A and B, where:

A =

[
1 2 3
4 5 6

]
, B =

[
7 8 9
10 11 12

]

A⊙ B =

[
1 · 7 2 · 8 3 · 9
4 · 10 5 · 11 6 · 12

]
=

[
7 16 27
40 55 72

]
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Khatri Rao Product

▶ The Khatri-Rao product is the ”matching column-wise” Kronecker product.

▶ If a and b are vectors, then the Khatri-Rao and Kronecker products are identical
a⊗ b = a⊙ b.

▶ Given matrices A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao product is denoted by

A⊙ B. The result is a matrix of size (IJ)× K and defined by


a1 ⊗ b1
a2 ⊗ b2

...
aK ⊗ bK


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Example of Khatri Rao Product

A =

[
1 2
3 4

]
, B =

7 8
9 10
5 6



A⊙ B =



7 · 1 8 · 2
7 · 3 8 · 4
9 · 1 10 · 2
9 · 3 10 · 4
5 · 1 6 · 2
5 · 3 6 · 4

 =



7 16
21 32
9 20
27 40
5 12
15 24


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MTTKRP

▶ Mode-0 MTTKRP: Gi ,r =
J∑

j=1

K∑
k=1

XijkVjrWkr

▶ Mode-1 MTTKRP: Gj ,r =
I∑

i=1

K∑
k=1

XijkUirWkr

▶ Mode-2 MTTKRP:Gk,r =
I∑

i=1

J∑
j=1

XijkUirVjr

▶ Here R is the rank of the matrix 1 ≤ r ≤ R, and Uir , Vjr , and Wkr are the factor
matrices for mode-0, mode-1, and mode-2, respectively.
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HIP Graphs

MTTKRP GEMM GEMM GETRI

MTTKRP GEMM GEMM GETRI

Build a
Graph

Launch the
Graph

MTTKRP GEMM GETRIGEMM

Time
saved

HOST

DEVICE

Kernel Launches from the host

Latency

HOST

Figure 3: Comparision of Hip-Graphs vs Regular kernel
launches.

▶ Graph launch submits all
work at once, reducing
CPU cost.

▶ Release CPU Time For
Lower Power, or Running
Other Work

▶ Efficient way to express
dependency

▶ Reduce Launch latency
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CPD-ALS

▶ CPD (Canonical Polyadic Decomposition) is different from other decomposition’s.

▶ SVD (Singular Value Decomposition) can only be used if tensors are flattened to a
matrix

▶ NMF (Non-negative matrix Factorization (NMF))is used for decomposing
matrices and show a significant performance improvement for smaller matrices.

▶ CPD-PARAFAC ALS has the ability to perform decomposition even if some data
samples are absent.
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CPD-ALS (contd)

Algorithm 1 CPD-ALS Algorithm

Input Tensor: X ∈ RI×J×K

Dense Matrices :A,B,C ∈ R
for iter ← 1 n do

Â = X1(C ⊙ B)(BTB ∗ CTC )†

B̂ = X2(A⊙ C )(ATA ∗ CTC )†

Ĉ = X3(A⊙ B)(ATA ∗ BTB)†

Convergence of Â, B̂ and Ĉ .

▶ The CPD decomposes an Nth-order
tensor into a sum of R rank-one
tensors.

▶ The tensors can be decomposed as
X ≈ λrar (◦)br (◦)cr = [[λ;A,B,C ]]

▶ We compute the difference between
the original tensor and the
approximate value ||X − X̂ || in each
iteration

▶ Continued till convergence or max
iterations.
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Mode 0 Analysis

MTTKRP

GEMM

GEMM

Inverse

Dense
Matrix B

J x R

R x J

R x R

R x R

Dense
Matrix C

GEMM

R x K

K x RR x R

GEMM
R x R

I x R

I x R

J x R
K x R

Sparse
Tensor

I x J x K x
Sparsity

Figure 4: Mode 0 analysis of the CPD Decomposition.

▶ T total = T mttkrp +
T Gemm + T inverse.

▶ Matrix
multiplications:GEMMs.

▶ Inverse : LU
Decomposition.

▶ MTTKRP: Custom Cuda
kernel
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Are GEMMs a bottleneck?

3 x 6186 3 *238K 3*24M 3 *38M
10
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P
S ▶ GEMMs are usually performed by

Vendor specific BLAS Libraries

▶ High GFLOPS ← Regular matrix.

▶ Poor Performance for tall and wide
matrices A ∈ R I×J I >> J or J << I

▶ There is no optimization specifically
designed for different architectures.
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Baseline

MTTKRP
GEMM

GEMM

GETRI

GEMM

Mode 1

MTTKRP GEMM

GEMM

GETRI

GEMM

Mode 2

GEMMMTTKRP

GEMM GEMM

GEMM

GETRI

Mode 0

GEMM

X

GEMM

C B

Figure 5: Baseline: Dataflow representation of the
CPD/PARAFAC-ALS Algorithm using a third order
tensor for a single iteration.

▶ Two GEMM operations must
be computed for each mode.

▶ No reuse of partially
computed GEMMs.

▶ For n iterations for a 3rd
order tensor ← 2n × n
GEMMs .
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Optimization 1 & Optimization 2

MTTKRP GEMM

GEMM

GETRI

GEMM

Mode 1

MTTKRP GEMM

GEMM

GETRI

GEMM

Mode 2

MTTKRP

GEMM GEMM

GEMM

GETRI

Mode 0

GEMM

X C B

Figure 6: Optimization I

MTTKRP

GEMM

GEMM

GEMM

GEMM

GETRI

Stream 1

Stream 2

Figure 7: Optimization II
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OptiCPD

Algorithm 2 OptiCPD algorithm

Input Tensor: X ∈ RI×J×K

for tensor in Dataset do

if α >> 2.5 then (Optimization2);

if α << 0.5 then (Optimization1);

if α << 2.5 and α >> 0.5 then

if I >> J ∗K or J >> I ∗K or K >>
J ∗ I then (Optimization2);

else (Optimization1);

▶ The choice of α was device
specific and was specific to
the device and the BLAS
libraries.

▶ The value of alpha was
determined by performing
regression analysis on
multiple tensors under various
conditions.
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Benchmark Tensors

Serial No Tensor Name Dimension Size (GB)

I Chicago 6186 x 24 x77 x 32 0.077

II Enron 6066 x 5699 x 244268 x 1176 1.2

III Nell-1 2902330 x 2143368 x 25495389 3.8

IV Nell-2 12092 x 9184 x 28818 1.5

V Nips 2482 x 2862 x 14036 x 17 0.057

VI Darpa 22476 x 22476 x 23776223 0.575

VII Freebase music 23344784 x 23344784 x 166 2.0

VIII Freebase sampled 38955429 x 38955429 x 532 2.9

IX Uber 183 x 24 x 1140 x 1717 0.052

X Synthetic 1 200K x 80K x 16K 9.0

XI Synthetic 2 400K x 80K x 8K 9.0

XII Synthetic 3 800K x 40K x 8K 9.0

XIII Synthetic 4 800K x 20K x 16K 9.0
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Experimental Setup

▶ Intel(R) Xeon(R) Gold 5215 CPU running at 2.20GHz with the MI-100 GPU.

▶ ROCM stack 5.3.0

▶ The FROSTT benchmarks Smith et al. (2017), the tensors from the Haten
dataset Jeon et al. (2015) Jeon et al. (2016) and certain synthetic tensors were
used for the experiments.

▶ The synthetic tensors a generated using the Gaussian random process with a zero
mean and variance one.

▶ The MI-100 GPU has a maximum DRAM capacity of 32 GB.

▶ The number of iterations was set to 5.
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Experiment 1: Variation of execution time for all the techniques
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Figure 8: Variation of the overall execution time of the
benchmark tensors for the CPD/PARAFAC-ALS for the
baseline and the proposed optimization techniques.

▶ Optimization 1 shows good
performance for benchmark
tensors I , II V and IX .

▶ The use of hip-graphs allows
for fine-grained task
scheduling and parallelism.

▶ The delay caused by GEMM
operations is masked by
dividing the workload into
smaller tasks and using
dedicated streams for
computation.
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Experiment 2 :A detailed breakdown of execution time
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Figure 9: Variation of the execution time of the benchmark tensors for the three design
techniques. The bar plot contains the split-up time for the Inverse, GEMM, and MTTKRP
operation in the CPD/PARAFAC-ALS toolchain.

▶ It is to be noted that the GEMM operations are consuming a lot of GPU resources.
▶ GEMMs Performed using optimization 2 show less latency.
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Experiment 3 :Performance Analysis of OptiCPD
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Figure 10: Variation of the overall execution time of the
benchmark tensors for the baseline implementation and
OptiCPD.

▶ OptiCPD achieves a speedup
of more than 2.35x for tensor
benchmark I,20.37x for tensor
benchmark II.

▶ For Large tensors OptiCPD
uses Optimization 2 to mask
the latency caused by GEMM
operation.

▶ For Small tensors OptiCPD
performs better because less
time is spent on the
synchronization wait and the
overhead caused by small
streams.
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Conclusion & Future Work

▶ OptiCPD achieved an average speedup of 7.5x.

▶ Planning to work on architectural optimization for improving CPD-ALS.

▶ Will investigate the division of work for CPD-ALS to CPUs and GPUs.
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