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GPUs have recently been adopted in many real-time embedded systems. However, existing GPU scheduling
solutions are mostly open-loop and rely on the estimation of worst-case execution time (WCET). Although
adaptive solutions, such as feedback control scheduling, have been previously proposed to handle this challenge
for CPU-based real-time tasks, they cannot be directly applied to GPU, because GPUs have different and more
complex architectures and so schedulable utilization bounds cannot apply to GPUs yet. In this article, we
propose FC-GPU, the first Feedback Control GPU scheduling framework for real-time embedded systems. To
model the GPU resource contention among tasks, we analytically derive a multi-input-multi-output (MIMO)
system model that captures the impacts of task rate adaptation on the response times of different tasks.
Building on this model, we design a MIMO controller that dynamically adjusts task rates based on measured
response times. Our extensive hardware testbed results on an Nvidia RTX 3090 GPU and an AMD MI-100
GPU demonstrate that FC-GPU can provide better real-time performance even when the task execution times
significantly increase at runtime.
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1 Introduction

In recent years, GPUs have been increasingly adopted in a wide variety of real-time embedded
systems. For example, autonomous driving system (ADS) needs to run advanced machine
learning (ML) algorithms for real-time object detection and path planning on on-board GPUs,
in order to detect surrounding objects and plan accordingly for the car’s near-future trajectory.
Another example is immersive virtual reality (VR) headset, which often must finish the real-time
processing and rendering of 3D videos, on its embedded GPUs, to avoid undesired delay during the
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interaction with the VR application (e.g., game or movie). Therefore, how to schedule real-time tasks
on GPUs has become increasingly important for embedded systems and has recently received a lot
of research attention (e.g., Refs. [3, 43, 48, 50, 52, 54, 59]). For example, in an ADS system, real-time
GPU scheduling can coordinate various tasks, such as front and rear camera image recognition
and path planning, so that all those tasks can meet their real-time deadlines [19, 25]. Similarly,
embedded GPUs are used for real-time object detection in drone-based systems, allowing drones to
recognize obstacles and adjust their flight path [60].

To date, most existing research on real-time GPU scheduling focuses on open-loop solutions,
where the execution times of real-time tasks need to be carefully estimated, as the worst-case
execution times (WCETs), in an offline manner to ensure runtime guarantees of timeliness.
However, for many real-time systems, the task execution times can vary significantly on both CPUs
and GPUs and so can be difficult to estimate precisely. Hence, any underestimation of WCETs can
lead to undesired deadline misses, while overestimation can result in resource waste and higher
system costs. For example, for CPU-based ADS tasks, the execution time of path tracking can vary
significantly based on road conditions. For GPU-based tasks, the traffic light detector of Apollo [1], a
well-known open autonomous driving platform, can have a 330% execution time increase depending
on the number of detected traffic lights [2, 62]. Although it is indeed possible to overestimate the
WCETs of real-time tasks in a conservative fashion for runtime schedulability guarantees, doing
so can cause a significant increase of needed CPUs and GPUs, and so is usually not desirable to
system designers.

Adaptive real-time scheduling (e.g., Refs. [8, 9]) has been previously designed to address this
challenge by dynamically adjusting the workloads of selected tasks, when the execution time of
some tasks increases at runtime. Such scheduling solutions keep monitoring the system schedula-
bility online and make necessary workload adaptation in a closed-loop manner to quickly react to
execution time variations. To this end, an effective closed-loop scheduling solution is called Feed-
back Control Scheduling (FCS) [4, 12], which dynamically controls either the CPU utilization or
the task deadline miss ratio (DMR) by adjusting the invocation rates of periodic tasks within
their allowed ranges. For example, the goal of CPU utilization control is to enforce appropriate
utilization bound (e.g., the Rate Monotonic Scheduling (RMS) bound [6]) on a CPU, such that
the real-time deadlines of all the tasks on the CPU can be guaranteed. FCS has been proven to
be effective in handling unexpected workload variations and so extended to control distributed
real-time system [13, 17, 18] and optimize system utilities [22, 24, 29, 30, 34].

Unfortunately, despite their effectiveness in controlling CPU-based soft real-time systems, exist-
ing FCS solutions cannot be directly applied to GPUs for several reasons. First, GPU utilization
cannot be used directly as a control objective for FCS utilization control because RMS utilization
bounds cannot be applied to GPUs. Second, previous FCS solution also controls the task deadline
miss ratio to some set point (e.g., 1%). However, a constant 1% deadline miss ratio is commonly
undesirable, even for soft real-time systems. Thus, a new control objective must be identified for
real-time GPU tasks.

In this article, we propose FC-GPU, a Feedback Control GPU scheduling framework for soft real-
time embedded systems. Different from previous FCS solutions that control either CPU utilization
or deadline miss ratio, FC-GPU is designed to control the response time of every GPU task to be
shorter than its respective deadline, by adapting the invocation rate of each task. To model the GPU
resource contention among tasks, we analytically derive a multi-input-multi-output (MIMO)
system model that captures the impacts of task rate adaptation on the response times of different
tasks. Then, based on the proposed MIMO model, FC-GPU is rigorously designed based on feedback
control theory to analytically guarantee the stability and control performance of the system.
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Specifically, this article makes the following contributions:

— Unlike prior work that either relies on open-loop GPU scheduling with WCET assumptions or
uses FCS only for CPUs (e.g., controlling utilization or miss ratio), we present the first closed-
loop FCS algorithm for GPUs. Our approach continuously monitors task response times at run-
time and adaptively adjusts task rates within allowed ranges to ensure real-time guarantees.

— We analytically derive a MIMO system model that captures the impacts of task rate
adaptation on the response times of different tasks. We then design our controller based
on the MIMO model and feedback control theory to outperform a baseline solution that
controls each task separately.

— We present hardware testbed results on an Nvidia RTX 3090 GPU and an AMD MI-100 GPU
to demonstrate the efficacy of the proposed FC-GPU algorithm. Extensive results show that
FC-GPU can provide better real-time performance with 2% fewer missed deadlines for GPU
tasks, even when the task execution times increase significantly at runtime.

The rest of thearticle is organized as follows. Section 2 reviews related work. Section 3 provides
background information. Section 4 describes the design of FC-GPU. Section 5 presents the testbed
evaluation, and Section 6 concludes the article.

2 Related Work

Due to space limitations, we discuss only the most closely related work on GPU real-time scheduling
and feedback performance control of computer systems.

GPU real-time scheduling: In the past decade, various scheduling methodologies have been
proposed to improve GPU utilization and performance, allowing multiple tasks to execute concur-
rently on a GPU [35, 42, 45, 53, 58]. There is also a considerable amount of work designed to enable
efficient GPU task preemption, such as PipeSwitch [57], EffiSha [46], and REEF [64]. In contrast
to those studies, our article focuses on embedded systems whose GPU tasks must meet explicit
real-time deadlines. Some GPU real-time scheduling algorithms have been previously proposed
[28, 31, 37, 40]. For example, Kato et al. introduce a priority-based scheduler [33] that assigns
temporal budgets based on task priorities and periodically replenishes them. GPU-TDMh [51] uses
time division multiplexing to effectively schedule hard real-time sporadic tasks on a single GPU.
SBEET and SBEET-mg have designed real-time GPU scheduling frameworks to optimize the energy
efficiency of embedded systems [3, 66].

While most of the existing GPU scheduling solutions operate in an open-loop manner to configure
the GPU based on offline-profiled parameters, our work explicitly monitors the task response times
and accordingly adjusts the GPU task rates in a closed-loop manner to meet real-time deadlines.
In addition, our work features a control-theoretic design foundation for analytically guaranteed
control performance, such as control accuracy and system stability, without exhaustive iterations
of tuning and testing.

Feedback performance control: As a theoretical tool for designing and analyzing adaptive
systems, feedback control theory has been extensively applied to computer performance manage-
ment [14]. For example, several control-theoretic techniques have been developed to control the
CPU temperature or power consumption [11, 27, 32]. There are some projects that have applied
control theory to real-time scheduling and applications. For example, Steere et al. have developed
a feedback-based scheduler [9] that guarantees desired progress rates for real-time applications.
Abeni et al. have presented control analysis of a reservation-based feedback scheduler [10]. The
most closely related work is FCS [4, 12], which dynamically adjusts the invocation rates of periodic
real-time tasks to control either the CPU utilization or the task deadline miss ratio. For distributed
real-time systems, end-to-end CPU utilization control [13, 17] and decentralized utilization control

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 155. Publication date: September 2025.



155:4 S. Subramaniyan and X. Wang

algorithms [18] have also been designed, respectively. In addition, FCS has been applied to various
real-time applications, such as autonomous driving [55, 65], information dissemination [20, 23],
and smart grid [38]. Furthermore, FCS is extended to optimize system utilities, such as energy
efficiency [22, 24, 29, 30, 34].

However, all the aforementioned studies focus on CPU. To our best knowledge, this article presents
the first study of applying control theory to GPU real-time scheduling.

3 Background

Most of today’s commodity GPUs are still not open-source, so different scheduling methods [46, 64]
have been reported for those GPUs. To design effective GPU control algorithms for real-time
guarantees, it is essential to thoroughly understand the underlying GPU scheduling mechanism.
Since we utilize both Nvidia and AMD GPUs, we analyze their scheduling mechanisms.

Nvidia GPUs have three compute modes: (1) exclusive, (2) prohibited, and (3) default. In the
exclusive mode, only one task can access the GPU resources [40]. This restriction can cause real-time
tasks to miss deadlines if multiple tasks exist in different GPU contexts. In the prohibited mode, no
context executes on the GPU. Therefore, we choose not to use the exclusive and prohibited modes.
We mainly focus on the default mode, which uses time-slicing, because it is common in most GPUs.
We set the compute mode to default by running sudo nvidia-smi -c @.

In addition to setting it to the default mode, tasks must be launched from separate processes.
This approach ensures that they are multiprogrammed, meaning they run concurrently using
time-slicing [47, 56]. When tasks are launched from separate processes at the device-driver level,
each process is associated with a GPU context, which represents a virtual address space and other
runtime states on the GPU. Any process accessing the GPU has a separate GPU context, regardless
of whether it uses the CUDA library. Contexts from different processes are time-sliced to share the
GPU hardware.

By default, AMD GPUs use spatial sharing. We configure the Linux driver on AMD GPUs to run
in single-process time-slicing mode to enable time-slicing in AMD GPUs. Specifically, we modify
the amdgpu driver by setting the following module parameter hws_max_conc_proc=1. This change
shifts the driver’s default multiprocess sharing mode to a single-process mode, prioritizing one
process at a time. After this modification, we recompile the driver to enable these changes.

When a GPU switches from one task to another, it initiates a context switch. Due to architectural
differences between GPUs and CPUs, GPU time-slicing operates differently from CPU time-slicing.
The primary sources of overhead during GPU context switching include saving large register files
and cache flushing [41]. To reduce these overheads, GPUs often use partial state-saving techniques
rather than saving the entire context. For example, GPUs retain resources like shared memory,
registers, and global memory across time slices, thus minimizing unnecessary data transfers [61].

Besides computational tasks, GPUs handle data transfer operations by loading data from the
main memory into GPU memory, typically using specialized copy engines. The GPU driver splits
data transfers into smaller segments, and preemption occurs at the boundaries of these segments
[52]. Beginning with the Pascal architecture, Nvidia GPUs utilize demand paging for memory
management. This approach prevents GPU memory belonging to a context from being swapped
out during a context switch, regardless of whether the GPU is integrated or discrete [69].

4 Design of FC-GPU

In this section, we first describe the task model and have an overview of FC-GPU. Then, we formulate
the control problem, discuss GPU system modeling, and design the controller based on the model
to solve the formulated problem. Finally, we provide the detailed steps for stability analysis and
present some discussion on overheads and other practical issues.
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4.1 Task Model

In real-time systems, a task can be implemented as a process or thread that needs to be scheduled
to run on the target GPU during specific time intervals. Each task can have multiple instances,
known as jobs. A job’s release time is when the job becomes ready to execute on the GPU and
denotes the time the system can begin to schedule and run this job. In this article, to simplify the
design, we assume all tasks are periodic. We consider periodic tasks because real-time tasks in most
embedded systems commonly run periodically to interact with the environment, such as sensors or
cameras [7]. We assume each task’s deadline is equal to its period because if a job cannot finish
within its period, the next job is released, and the current job becomes outdated. For instance, in
ADS, tasks such as sensor data processing, decision-making, and vehicle control must be conducted
periodically to ensure safe and efficient operation [50].

We now introduce the notation used throughout the article. A system consists of N tasks (t;,
1 <=i <= N), with each task t; defined by the following parameters:

— ¢;: Execution time for the task in GPU.

— r;(k): Task rate of t; in the k" sampling period.
— 0;: Context switching overhead for ;.

— ¢ = ¢; + 0;: Effective execution time for the task in GPU.
— pi(k) = 1/r,(k): Task period in the kth period.
— d;(k): Task deadline of t;.

— jie: The k" job of t; in the k" period.

— hy: Release time of job j.

— fi: Finish time of job ji.

— q;(k): Response time of ji, i.e., fi — hjx-

— z;: RTR set point for ¢,.

— rtry(k): Response Time Ratio (RTR) of jj.

Our task model accommodates a wide range of tasks, defined as t(e;, p;), where ¢; is the GPU
execution time and p; is the task period. The execution times of these tasks can be known in
advance, as they can be estimated with benchmarks. However, the execution time of a task may
vary at runtime due to different sensor inputs or the need for additional computation. These runtime
variations necessitate a closed-loop solution, because open-loop scheduling based on estimated
execution times cannot handle them effectively. The response time for each job jj. includes its
execution time and any delays due to preemption by other jobs on the same GPU. Since g; is
unknown at design time due to runtime GPU scheduling, we measure it for each job as its finish
time minus its release time. The RTR measures a task’s proximity to its deadline and is expressed

as:
i(k
e RG] o
An RTR of 1 indicates that the job of the task in that period completes exactly by its deadline; if
it exceeds 1, the job misses its deadline. For example, with an RTR set point of 0.9 and a period of
255, every job of the task needs to finish by 1.8 s. However, if a job runs slightly longer than 1.8, it
can still meet the deadline of 2s.

riry(k) =

4.2 Overview of FC-GPU

In this section, we provide a high-level description of the system architecture of FC-GPU. Given
a GPU that runs multiple real-time tasks, the design objective is to ensure the response time of
every task be shorter than its respective deadline by controlling the RTR to the desired set point

(e.g., 0.9).
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There can be different ways to adapt the tasks for controlling their response times. In this article,
we adopt task rate adaptation because it is widely used in real-time systems [4, 12, 13, 18, 21].

In rate adaptation, we assume that the rate at which a task operates can be dynamically adjusted
within a specified range, denoted as [Fip, Fiax ]- Previous research has demonstrated that task rates
often fall within this adjustable range in various fields, including real-time multimedia applications
[44] and autonomous vehicle systems [55]. By dynamically altering task rates, embedded systems
may optimize resource utilization, meet real-time deadlines, and maintain system stability in various
operating environments. Also, the initial rates may not give us the desired utilization required for
the system and ensure minimalistic deadline misses [13].

A key feature of our task model is its ability to New task rates for next control period
control the system in an unpredictable environ- [ I |
ment where the task’s response time is unknown Task Rate
to the scheduler. To perform rate adaptation, the Actuator
FC-GPU architecture features a MIMO feedback
control loop that dynamically adjusts task rates
to ensure that the task RTRs converge to their
specified set points, as shown in Figure 1. This

RTR MIMO
Controller

Task N Process (<t

Task 1 Process
Task 2 Process

Response

MIMO controller is located on the host CPU. A Time Monitor
periodic feedback loop is invoked at every sam- | CPU —,,—‘ ,—I
pling instant and comprises a Response Time v v v
Monitor, a Controller, and a Task Rate Actuator. [ Concurrent ] [ Concurrent J . [ Concurrent ]
The process within each control period is as Schelduler Scheduler Scheduler
follows: GPU ST R :
(1) The monitor measures the response time i | = |_2 | |:’\:)r|1 c15|=|uzsc|h;;1l|2] | i
ratio rtr;(k) for each task during the last Lo Time . . ;
control period. Measured response time of each task

(2) The controller collects all the rtr;(k) values
. Fig. 1. Overall framework of the FC-GPU control loop
and the input task rates r;(k) and computes o , . .
th tional tant (A) that has t that periodically monitors the response time ratio
e proportional constant (A) that has to (RTR) of each task and accordingly adjusts the task
be added tf) .the task rates. rate to ensure that the task response times be shorter
(3) After receiving the updated (A) from the  {han their respective deadlines.
controller, the Task Rate Actuator adjusts
the r;(k) for all periodic tasks accordingly.
In this system, task rates (r;) act as manipulated variables, and RTR (rtr;) is our controlled variable.
In the subsequent subsections, we present the design of the MIMO controller.

4.3 Problem Formulation
Based on the task model stated in Section 4.1, the FC-GPU control problem can be formulated as a
constrained optimization problem, as follows:

N
min f(x), where f(x) = Y (@ - rm®)’, x = [, R, ... r®)]. @)
i=1

subject to:
Tmin < rl(k) < Tmax- (3)
The design goal is to minimize the difference between the set point z; and the observed RTR

(rtr;(k)) by adjusting the rate of each task r;(k) within the feasible range [Fiin> "max - Formally, the
scheduling objective is an online optimization problem.
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Given a proper RTR set point (e.g., 0.9), this formulation ensures that when f(x) is minimized,
the tasks meet their deadlines. Instead of solving this constrained optimization in a classical offline
manner, we use a control-theoretic approach with a closed-loop feedback mechanism to solve it online.
At each sampling interval, the controller measures the current state of the system (that is, the RTR
of each task), computes the error relative to the set points z;, and adjusts the rates r;(k) accordingly.
Over time, these adjustments converge to a stable operating point that minimizes f(x) within the
allowable limits, ensuring that the response time of every task remains within its deadline. This
control-based method is suitable for real-time GPU scheduling because it reacts immediately to
changes and remains robust under workload fluctuations or varying execution times.

4.4 Modeling of GPU Real-Time System

To effectively apply a control-theoretic methodology, we must first establish a dynamic model that
characterizes the relationship between the manipulated variables r;(k) and the controlled variables
rtr;(k). Controlled variables are the system outputs we regulate or maintain at desired levels, such
as RTR and system utilization. Manipulated variables are system attributes the controller can
dynamically adjust to influence the controlled variables. Since rtr;(k) = g;(k)/ p;(k), we first build a
model between task rates 7;(k) and the task response times g;(k).

To understand how the response time varies due to other concurrent tasks, we consider a simple
workload (matrix multiplication) as an example [3]. The workload consists of a matrix multiplication
kernel where each thread computes a single element of the output matrix by taking the dot product of
arow from matrix A and a column from matrix B. The kernel is executed with a 2D grid and 2D thread
blocks (32, 32), where each block computes a 32x32 output tile. To optimize memory transfers, zero-
copy pinned memory is used, allowing the GPU to directly access host memory. We launch a single
matrix multiplication process and then launch two, three, and four processes of the same matrix
multiplication task in parallel [49]. We measure their response time using the CUDA time stamper.

The variation in response time is shown in Figure 2. The response time follows a pattern pro-
portional to N x e;, where ¢; is the execution time for the task and N is the number of tasks. The
observation is made from the following: When N tasks are present, the GPU switches between
these N tasks. Assuming ideal time-slicing where the GPU perfectly divides its time between tasks
without overhead, each task effectively gets % of the GPU’s time in each cycle. Consequently, the
time to completion for each task becomes approximately N x ¢;, where ¢; is the execution time
with exclusive GPU access. This observation aligns with the time-slicing mechanism used in many
Nvidia GPUs [49, 56, 63].

In a real-time embedded system, the response time of a task is typically modeled as the sum of
its execution time (e;) and contention time (¢;) [36]. The execution time (e;) represents the duration
a task takes to complete its operations if it has exclusive access to the GPU resources. In our
design, we can easily estimate the execution time (g;) in advance using benchmarks. However, the
contention time (¢;) accounts for the additional delay introduced when multiple tasks compete for
the same GPU resources. As GPUs often handle multiple tasks concurrently, they need to perform
context switches, In addition to this, there can be contention for GPU resources. This contention
can significantly increase the response times of the tasks. Essentially, the more frequently a task
competes for GPU time, the higher the contention times of other co-scheduled tasks, thereby
prolonging the response times for all tasks.

To build our model, we study how the response time of periodic tasks changes when they run
alongside other tasks with different task rates. We list two simple examples shown below.

Example 1. We use the following configurations: #; (1,2) and #; (1.5,3). We consider 3 jobs for t;
and 2 jobs for t,, as shown in Figure 3. At time 0, both the two tasks are released together and we
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t1 = (e = 0.75,p, = 2)
m t=(e1=1,p1 =2) 1y =(es =1,p» = 2.5)
g ty = (e2 = 1.5,py = 3) t1 11
- t; Lin R 0 1 2 3 4 7
-] 0 1 2 3 4 5 6 j13 finishes at 4.75
,g j13 and jo, finish at 6 [2) A :
o " =R o132 % g
g 0 1 2 3 4 5.6 oo finishes at .75/
2 ) GPU (I GPU | d
£ *. Som— - - >
K 1 2 3 4 0 172 34 546 0 1712 3.4
Number of Tasks ju1 finishes at 2 . ji fiiishes at 4 Ju finishes at 1.5 ™~ j1 finishes at 3
J finishes at 3 jo1 finishes at 1.75

Fig. 2. Response time follows the Fig. 3. Release time for each job for Fig. 4. Release time for each job for
pattern N x e;. t, and t, in example 1. t, and t, in example 2.

see that j;; and jp; are time sliced. As soon as j;; finishes its execution at time 2, j;, is immediately
released, and it competes again with j,;. Here, j,; runs to completion at time 3. At time 3, the
second job jy, is released and competes with j;, and later with j;3. Here, we compute the response
time (g;) for each job using the formulae g; = f; — h;., where fj. is the completion time and hy; is the
release time of the task. More details on the response time calculation can be found in this textbook
[36]. The response times for jiy, ji5 and j;3 are 2 each and the response times for j,; and j,, are 3
each. The average response times of t; and #, are 2 and 3 seconds, respectively.

Example 2. We consider two tasks using the configuration #;(0.75,2) and t, (1,2.5) as shown in
Figure 4. Here, ji; and jy; are time sliced since they are released together. j;; finishes its execution
by time 1.5 and j,; finishes its execution by 1.75, because after 1.5, j,; runs alone. At time 2, j;5 is
released and since there are no tasks present in the GPU, j;, has entire access to the GPU resources.
At time 2.5, when jy, is released, it time slices with j;, and j;, finishes its execution at time 3
and j,, finishes it execution at time 3.75. The job j;3 is released independently at time 4 and it
runs to completion within 0.75 seconds. The response times for ji1, j;, and j;3 are 1.5, 1 and 0.75,
respectively. The response times for j,; and jy, are 1.75 and 1.25, respectively. The average response
times of #; and ¢, are 1.08 and 1.5 seconds.

We now try to derive our model by generalizing the examples. For two tasks t; (e;, p;) and £,
(ey, py), if t; operates with a period p; (where p; = %) close to e; and no other tasks are concurrently
using the GPU, t; efficiently utilizes all available GPU time. Consequently, its response time ¢,
equals e;. However, when £, is active simultaneously, even with a longer period p, (where p, = %),
both tasks compete for GPU time during overlapping periods. A higher r, value increases the
frequency of overlapping periods. This increase in overlap intensifies resource competition and
incurs frequent context switching. Consequently, it raises the response times for both #; and t,.
Conversely, a lower r, reduces t;’s response time. These principles also apply to t,’s response time
relative to r;. This demonstrates that the rate 7, (where i # j) of one task affects the response times
of other tasks running on the GPU.

The response time of t; includes its execution time e; plus additional contention caused by #,.
This contention is influenced by r, and the context switching overhead 6, and can be computed as
(ey +0,) xry. Previous work [69] reports that GPU context switching are long and can take between
50 and 750 ps, which noticeably increases task response times. Using this approach for measuring
contention, the response time of #; can be modeled as shown in Equation (4), where e; and e, are
the execution times of the two tasks.

q1(k) = e + (0, + &) xrp(k — 1) 4)
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It is important to note that the model (4) shows the response time of one task g;(k) can be
significantly affected by the rate/frequency of the other co-scheduled task (i.e., r,(k — 1)). Hence,
we must design a MIMO controller that can effectively handle such interplay among different
tasks. Any other control solutions that handle each GPU task independently from each other
without considering such mutual impacts would not work well, as later demonstrated in our testbed
evaluation.

To facilitate controller design later, we derive a difference equation based on the model in
Equation (4) using the steps below for t;.

g1k —1) = e; + (6 + &) xrp(k — 2). (5)
We obtain:
q1(k) — q1(k — 1) = (6, + &) x (rp(k — 1) = rp(k — 2)). (6)
By defining the rate difference as
Ary(k — 1) =ry(k — 1) — ry(k — 2), (7)

Equation (7) can be substituted to Equation (6) and we can obtain the general expression for a
single task t; as shown in Equation (8).

q1(k) = q1(k — 1) + (6, + &) x Ary(k — 1). (8)
Equation (8) presents the difference equation for task t;. If we consider task #; as the task
competing for the resources of t,, we can derive the difference equation for ¢, by following the
same approach using Equations (5)—(8).
For a system comprising two tasks, the resultant expression is shown below:
q1(k) = q1(k — 1) + (6, + €5) x Ary(k — 1),
go(k) = go(k — 1) + (6 + 1) x Ary(k — 1).
In Equation (9), 8; + e; can be substituted as é; and 6, + e, can be substituted as é, and the
expression is given below.

©)

q1(k) = g1 (k — 1) + & x Ary(k — 1),
q2(k) = qa(k — 1) + & x Ary(k —1).

For the rest of the derivation, we use the model from Equation (10) instead of Equation (9) as the
latter is the expanded form of the former
We now represent the model in the standard MIMO format, as shown in Equation (11).

qk)=qk-1D)+Axrk-1), (11)

where A is a square matrix with A; = 0(1 <= i <= N) and A;; = &(i # j). The ¢; values are the
corresponding effective execution times of the tasks.

(10)

4.4.1 Extension to N Tasks: For tasks t; (e;, p;) wherei = 1,2,..., N, if t; operates with a period
py (where p; = %) very close to its execution time e; and no other tasks are concurrently using the
GPU, ¢, efficiently utilizes all available GPU resources, and its response time g; equals e;. However,
when other tasks ; (where j # 1) are active simultaneously, even with longer periods p; = rl/_, all
tasks contend for GPU resources during the overlapping periods.

A higher rate r; for task t; increases the frequency of overlapping periods, intensifying resource
competition and thereby raising the response times for all tasks #;. Conversely, a lower rate r; reduces
the response times of all tasks affected by #;’s competition for resources. These principles extend to
the response time of any task f; relative to the rates r; of other tasks ¢; (j # i). This scenario clearly
demonstrates that the rate r; of one task affects the execution and response times of other tasks.
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Extending the model used for two tasks to N tasks for ¢; the contention time caused by other (N —1)
tasks can be represented as the product [r, 13 - ry| Ofe; +60, e3+60; - ey+0y]. The
response time for the task #; can be expressed in summation as

N
q1(k) = e; + ) (g +6) - r;(k — 1), (12)
i=2

N
q(k) =e + )& r(k—1). (13)
i=2

We compute the difference equation for the above model and for a system comprising N tasks
the response time for #; can be represented as

N
q1(k) = q1(k— 1)+ Y & Ary(k — 1) (14)
i=2

=

when expanded as shown below
ql(k) = ql(k - 1) + éz * Arz(k — 1) + é3 * Ar3(k — 1) él * ArN(k — 1) (15)

This formulation captures the idea that the response time for ¢; is influenced by the cumulative
effect of being preempted by the system’s other N — 1 tasks. The generalized model for a system
comprising N tasks is shown in the Equation (16). The actuation for the controller using this model
is discussed in detail in the next subsection.

q,(k) q1(k—1) 0 & en Ary(k—1)
w® | _|ak-0| & o o & |ank-D ”
@) lavk-0l le & o ol lank-1

4.5 Controller Design and Analysis

We present the design and analysis of our proportional controller FC-GPU. We first derive the
state representation of the model. Next, this formulation is transformed into a closed-loop solution,
which allows us to design the control algorithm.

4.5.1 State Space Representation: Based on the system model, a MIMO controller can be designed
to ensure the RTR settles to its desired set point. The PID control approach used in earlier works on
real-time FCS [32] is suitable for real-time systems. Our design utilizes MIMO controllers, which
differ from single-input-single-output (SISO) controllers. SISO controllers calculate the next
state output based on a single set point and its gain, while MIMO controllers take into account all
set points and their corresponding gains. This approach ensures minimal steady-state errors or
oscillations and provides a robust design for task scheduling. We apply the Proportional control (P)
theory, as outlined in Ref. [14], to design our controller based on the system model described in
Equation (11). The basic idea of a P-controller is to maintain system performance by continuously
adjusting the control input based on the current error. The control objective is to minimize the
error by dynamically adjusting the input task rate r; in real-time. A P-controller achieves this
by applying a control input r(k) directly proportional to the current error. This straightforward
approach continuously adjusts the input at each sampling period based on the instantaneous
error, offering a computationally efficient solution. It is especially advantageous since it has a very
minimal computational overhead. The State space representation of a MIMO controller is shown in
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Equation (17).
x(k) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k).
Here- x(k) is the state vector, x(k) is the derivative of the state vector, u(k) is the input vector,
y(k) is the output vector, A, B, C, and D are matrices that define the system dynamics and output.

For our system, We choose B as the matrix from our system model, A and C are Identity matrices,
and D is 0. The final representation of our MIMO system is shown in Equation (18)

x(k)] _[I B][x(k)
ol =1 ol o
4.5.2  Controller Design: In our control problem, we aim at managing the controlled variables
rtr;(k) by adjusting the manipulated variables r;(k). To design the controller, we compute RTR by

multiplying the task rates by their corresponding response times, as stated before. For a system
consisting of N tasks, the model can be generalized as shown in Equation (19).

(17)

rtry (k) rtry(k — 1) 0 ay ... 4N Ary(k—1) Ary(k—-1)
rtrp(k) rirn(k — 1) aNi anz - 0 Arp(k — 1) Ary(k —1)
Equation (19) can be represented as
N
rtri(k) = rtry(k — 1) + Z ;- Ari(k — 1) - Ary(k— 1), i=1,2,..,N. (20)
=1
]j::i
Example: For a system with two tasks, the relationship is captured as
riry(k) = riry(k — 1) + ayy x Ary(k — 1) x Ary(k — 1), )
1

rtry(k) = riry(k — 1) + ayy x Ary(k — 1) x Ary(k — 1).
To transform the model in Equation (20) into a standard state space form, we first simplify the

products of the task rate differences Ar;(k — 1) x Ar;(k — 1) by introducing new variables Ar;;(k — 1)
for each ordered pair (i, j) with i < j. This modlﬁed model is shown in Equation (22).

rtr(k)—rtr(k—l)+2a Arik—1), i=12,..,N. (22)

]il

Example: The non-linear expression for two tasks in Equation (21) can be linearized as shown

below
rtrl(k) = rtrl(k - 1) + a12 Arlz(k - 1),
rtrz(k) = rtrz(k — 1) + a21 Arlz(k — 1)
We can represent our control problem using the state space equations given in Equation (24).
In this representation, A and C are identity matrices, and B is a matrix that contains the effective
execution times of the tasks. The term r(k — 1) represents the control input vector, whose elements

are Aryi(k — 1) fori < j. .
[;gg] - ﬁ g] [r(i(f)l)]’ (249)

In a MIMO controller, the system’s performance is influenced by the inputs u(k) and the internal
state. The equation for a proportional MIMO controller is given by u(k) = —Kp x (z(k) — y(k)),
where z(k) is the reference vector representing the desired set points, and y(k) is the actual output

(23)
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of the system. After determining the desired system behavior, we use a technique called pole
placement to find the optimal gain matrix for the system. This method adjusts the system’s response
by placing its poles in specific locations. We aim at placing these poles within the unit circle to
ensure stability and performance, as discussed in references [68] and [16]. We typically use Matlab
to compute the gain matrix for the closed-loop system. In our MIMO controller, using the model in
Equation (24), we can control RTR; but in our testbed, we can only directly adjust the task rates
ry(k), ry(k), ..., r,,(k). To obtain ry(k) and ry(k), ..., r,,(k) we transform r(k) into task rates r;(k)
to r, (k) through a process called actuation. The inputs ry (k) to r,,(k) through the actuations are
provided in Equation (25).

(k-1
n) =tk — 1)+ k=D (25)
[Trk-D
j=1
J#i
Example: The equations for the input task rates for the two tasks using actuation are:
20 =nl- 1+ BED,
5 (k —
(26)
_ _ uy(k —1)
rz(k) —r2(k 1)+ 77‘1(](—1)

4.6 Stability Analysis

A key advantage of control-theoretic design lies in its capacity to provide analytical assurance
of system stability and control accuracy, even when the model used for controller design can be
inaccurate or vary significantly at runtime. We now outline the steps of analyzing the stability of
our MIMO controller.

(1) Derive the control inputs u(k) based on the system model stated in Equation (17).

(2) Derive the closed-loop system by substituting the control inputs u(k) derived in Step 1 into
the actual system model.

(3) Derive the stability condition by computing the eigenvalues of the closed-loop system. If all
the eigenvalues are inside the unit circle, the closed-loop system is stable.

We consider a system comprising N tasks, where the matrices in the state-space model (17) have
the following dimensions: A € RVN, B € RN*N, and x(k), u(k) € RN. From the state-space model
in Equation (24), we define the system matrices as follows: A = In, B € RN*N ¢ = Inns and
D = 0. We assume a scalar state-feedback control law of the form u(k) = —kpx(k), where kp €Ris
a scalar feedback gain applied identically across all tasks. The resulting closed-loop system can be
represented in an augmented form as shown in Equation (27).

INvn - 0

In the next step, we compute the eigenvalues for the closed-loop system to derive the stability
range [68].

M) = [IN— My —kpB] (28)

Since M(A) is a block matrix and —Aly is invertible for A # 0, we apply the Schur complement
formula to compute the determinant:

det(M(1)) = det(~Aly) - det ((1 — DIy - ka) . (29)
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k
Let y1; be the eigenvalues of B. The eigenvalues of the matrix (1 — 1)y — TPB are:

a-1- %M* (30)
Setting the determinant to zero gives:
k
-2 =0 (31)
Multiplying both sides by A, we get:
A=) = Ky (32)
This yields a quadratic equation in A:
A2 = A+ kyp = 0. (33)

Solving for A, we obtain:

1+ /1 -4k,
e sy (39)

The system is stable if all eigenvalues satisfy |A| < 1, which holds if:
1
Letting p.,.« = p(B) be the spectral radius of B, the sufficient condition for stability becomes:

0<kp< 4'p(B).

Equation (36) has established a stability region in which the closed-loop system will remain
stable if the gains of the actual system are within this region. In other words, the response times of
the controlled real-time tasks can be controlled to their desired set points, if their execution time
variations are within the derived range. In our stability analysis, we assume the chosen ranges are
feasible, suggesting that a range of task rates within acceptable parameters may align the task RTR
with its set point. We now use an example to show the stability analysis.

Example: We consider a system comprising of two tasks. We choose two control inputs u(k)
to regulate the system’s behavior. Let A = I,,, be the identity matrix [, and let B € R*? be a
matrix representing the system’s input dynamics. We calculate the closed-loop representation for
the system to perform stability analysis. For simplicity, we assume kp is a scalar. The closed-loop

expression is given by
A —k,-B
[ kp ] ) (37)

I D

Since D is a zero matrix, we find the eigenvalues A for the matrix in Equation (37) by substituting
A=JandC=1

(36)

I-AI —k,-B
p
[ I o- AI] ' (38)
Considering a system of two tasks, where I and B are 2 x 2 matrices, the full matrix expands to:
a-2 0 0 —kp, x by
0 (1-1) —k,xb 0
M= P72 39

1 0 - 0 (39)
0 1 0 -
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To simplify the matrix and facilitate the calculation of the determinant, we swap rows 2 and 3
and columns 2 and 3. We then compute the determinant of M’ and set it equal to zero.

N -2 0 0
M=o xb, - 0 | 40)
0 0 1 -1
We compute
det(M’) = 0. (41)
This yields the expression:
A((1 =)A= kZbiby) = 0. (42)
A1-2)?% = kfj b, b,. (43)
Letting y = k;,\/b1 by, we get:
A1 = 2)?% =2, (44)
This leads to two quadratic equations:
2 —-2+y=0 and A>—-A-y=0. (45)
For the first equation, the discriminant is D = 1 — 4y. For real roots, D > 0, so:
1
< -. 46
r<y (46)
The roots are:
1+,1-4
A= %Y (47)
For stability (|A| < 1), we require:
1
0<y< e (48)
Substituting back y = k\/b; b, and assuming b;b, > 0, we find:
0<k,< (49)

4.[b,b,

4.7 Discussion

Design consideration. Our design assumes that the number of tasks, N, is known, which is
reasonable because most embedded systems have fixed numbers of tasks. When the number of tasks
changes, a different system model must be used to design a different controller. For systems whose
tasks may change at runtime, we can have multiple system models for different task numbers and
switch the designed controllers upon dynamic task arrival or departure. We assume a context-switch
overhead of 750 ps, an upper bound reported in Ref. [69]. In real-time GPU scheduling, a Proportional
controller imposes minimal computational overhead and is straightforward to implement, whereas
MPC must solve an optimization problem at every step, leading to significant CPU and memory
usage. We operate the proportional gains within the proven stability region, ensuring no overshoot
or instability under changing workloads. By contrast, MPC’s high overhead and complexity can
violate the tight timing constraints of embedded platforms. For our experiments, the acceptable
system performance is when the RTR (i.e., rtr;(k)) should fall within +0.02 of the set point.
Overhead Analysis. The RTR control service necessarily introduces overhead. This overhead
includes response time monitoring, control computation, and rate adaptation. FC-GPU is viable
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Fig. 5. (a) The overhead for monitoring the response times. (b) The overhead for the proportional controller.
(c) The overhead for the task actuator involves updating the task rates.

only if the overhead is sufficiently low. To accurately measure the overhead, we add time stamps at
the starting and finishing points of each segment of the control service code to get the execution
time. Since FC-GPU runs at the highest Linux real-time priority, the code segment between two
timestamps will not be preempted during its execution. Hence, the time-stamped result accurately
reflects the real execution overhead. To achieve fine-grained measurements, we put each code
segment of the control service (monitoring, control, and rate adaptation) into a loop to run the
tested code 100 times for an averaged result by minimizing system noise.

Figures 5(a) and 5(c) show that the overheads of monitoring response times and rate adaptation
for FC-GPU increase from less than one microsecond to about 3 microseconds, when the number
of tasks in the system increases from 2 to 16. The overheads are negligible because both parts have
only 10 or fewer lines of code. The controller has a slightly higher overhead that ranges from 2
to 28 microseconds, as shown in Figure 5(b). This is because the controller has several operations,
such as the feedback control law and computing the deviation from the set points. In summary,
such low overheads of FC-GPU are acceptable to most systems. In our implementation, the FC-GPU
controller is running on a dedicated CPU core to communicate with the GPU tasks via shared
memory.

Aperiodic or Sporadic Tasks. FC-GPU is not limited to periodic tasks, even though we focus
mainly on periodic tasks in this article. FC-GPU can be integrated with classical approaches that
handle aperiodic or sporadic tasks. For example, in real-time scheduling, a polling server or a
sporadic server [15] can be used to convert aperiodic or sporadic tasks into a periodic framework.
Specifically, for each aperiodic task, a polling server is created with a period and execution time
budget. Upon the arrival of an aperiodic task, it will be buffered into a queue. In each period, the
polling server will (1) process the aperiodic task in the queue and run until its budgeted execution
time is exhausted, or (2) suspend itself if there is no task in the queue [15]. FC-GPU can be integrated
with polling server to handle aperiodic tasks. Due to its feedback nature, FC-GPU adapts the rates
of all tasks (including the polling server) to control the task RTRs at the desired set point. Upon the
arrival of an aperiodic task that will be processed by the polling server, the RTRs of all tasks may
increase due to the competition of this aperiodic task for GPU resource. As a result, FC-GPU can
adjust the task rates to run them slower, so that the task RTRs can be controlled to the set points
again. This is similar to the case when a periodic task (the polling server) has unexpected execution
time increase (from 0 to the budgeted execution time). This case has been tested in Sections 5.1 and
5.2 to show that FC-GPU can quickly adapt to such runtime execution time variations.

5 Testbed Evaluation

Hardware Testbed. Our testbed includes an Nvidia RTX 3090 GPU and an AMD MI-100 GPU. We
run Ubuntu 20.04 LTS as the operating system, along with CUDA Toolkit 12.0 on the Nvidia GPU and
ROCm 5.3.0 on the AMD GPU. We implement our controller in C++. To reduce redundant data copies
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Fig. 6. Open-loop vs. closed-loop scheduling. Figure (a) shows that with no rate adaptation, both tasks deviate
from their set points since the response times of the tasks increase and miss deadlines when the workload
increases at the 30th control period. Figure (b) shows the variation in task period for the open-loop experiment.
Figure (c) shows that the closed-loop solution ensures the tasks meet their set points. Figure (d) reveals how
a closed-loop controller continuously updates the task periods.

during each control period, on the Nvidia GPU we allocate host memory with cudaMallocHost
and for the AMD GPU, we use the ROCm counterpart, hipHostMalloc, which provides pinned
(page-locked) host memory and enables more efficient data transfers between the CPU and the GPU.

Workload Description. We use workloads from Nvidia Samples [5] and the Rodinia Bench-
mark [26]. These benchmarks are used in work done on real-time systems [3, 49, 66, 69]. The Nvidia
Samples suite includes two compute-intensive tasks: dxtc, which performs texture compression,
and stereodisparity, which processes stereo vision data. The Rodinia Benchmark suite provides
four tasks: srad, which reduces speckles via anisotropic diffusion; hotspot, which simulates heat
dispersion on a 2D grid and is memory-intensive; floyd-warshall, which computes all-pairs shortest
paths in a compute-intensive manner; and stencil, which performs memory-intensive computations
on 3D grids. The control period for all experiments is 4 seconds. In this section, all the task durations
are in milliseconds.

Metrics. We use four metrics to compare FC-GPU with the baselines. The first metric is RTR
(rtr) as shown in Equation (1). The second metric is the Deadline Miss Ratio (DMR) in every control
period. The deadline-miss ratio is an important metric for real-time systems. When the system’s
RTR exceeds 1, it results in missed deadlines, indicating that the task’s response time exceeds
its deadline, which is also its period. To calculate DMR, we monitor jobs whose response time is
longer than the task’s period and mark these as deadline violations. This process repeats for each
control period to determine the frequency of such violations. The third metric is task execution
jitter. Task execution jitter denotes the largest difference between the execution times of a task’s
jobs, expressed as a percentage of the mean execution time. The fourth metric is the variance in
response time, which indicates how much the response times fluctuate around their mean.

In this section, we present the results of five sets of experiments on our testbed. Section 5.1
shows the limitations of open-loop GPU scheduling approaches. Section 5.2 compares FC-GPU
with a state-of-the-art solution. Section 5.3 compares FC-GPU with two well-designed closed-loop
baselines. Section 5.4 examines the accuracy of FC-GPU’s control at different set points across
different GPUs. Section 5.5 demonstrates how the system adapts to online workload variations.

5.1 Limitation of Traditional Open-Loop Scheduling

One of the primary motivations for proposing a closed-loop solution is that existing open-loop
scheduling solutions [57] do not adapt the task rates when there are fluctuations in the workloads.
In order to underscore this limitation, we illustrate how an open-loop solution that lacks any
feedback or control logic cannot maintain the RTR of each task at its intended set point. For this
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illustration, we choose two workloads, mm (10, 20) and stencil (200, 400). We carefully tune their
task rates to ensure that each workload initially converges close to its respective set point without
inducing large fluctuations. We select the set points for both workloads to be 0.90. Under the initial
workload conditions, both mm and stencil have their RTR at their set points as shown in Figure 6(a).
Figure 6(b) depict the tasks’ periods remain constant throughout the experiment.

Real-time systems commonly undergo workload fluctuations at runtime due to external distur-
bances, environmental variability, or sporadic task arrivals. These variations can significantly affect
performance and responsiveness, potentially causing tasks to exceed their deadlines. For example,
the traffic light detector of Apollo [1], a well-known open autonomous driving platform, can have a
330% execution time increase depending on the number of detected traffic lights [2, 62]. We increase
the computation for the two workloads in the control period 30 to evaluate how FC-GPU handles
such conditions. To do this, we increase the input size of mm from 512k to 1024k, effectively doubling
its execution time. Simultaneously, we increase the iteration count of stencil from 375 to 400.

After the control period 30, we observe that mm’s RTR exceeds its set point. Concurrently, stencil
also experiences an elevated RTR as the two tasks compete for GPU resources. This causes both
tasks to violate their respective RTR constraints, and mm ultimately misses its deadline. These
observations confirm that an open-loop scheduling framework is inadequate. It does not track
changes in workload or respond to rising computational demands.

We propose our closed-loop feedback control solution (FC-GPU) to overcome this limitation. In
FC-GPU, the rate of each task is recomputed at every period interval based on the observed RTR of
all the tasks. In Figure 6(c), we demonstrate how this closed-loop approach drives mm and stencil to
their respective RTR set points by adjusting the periods shown in Figure 6(d). In the control period
30, when the computation increases, the RTR increases for both tasks, but the controller ensures
that the tasks meet their RTR set points in subsequent control periods.

5.2 Comparison with the State-of-the-Art Open-Loop Solutions

In this experiment, we compare FC-GPU with a state-of-the-art solution, GPU-TDMh [51], because
both FC-GPU and GPU-TDMh are based on time slicing. As discussed in Section 2, GPU-TDMh
is an open-loop solution that cannot adapt the system at runtime. Hence, it can be expected that
GPU-TDMh shares the same problem with the open-loop solution in the last section. Specifically,
GPU-TDMh conducts offline profiling to find a fixed slice length for each GPU task so that every
job’s slices can be finished before its deadline. At runtime, a lightweight reservation server wakes
up every period to check each task. If a task has work pending, it launches one pre-sized sub-kernel
corresponding to its slice, then waits for the next period.

To perform the experiment, we use the matrix multiplication benchmark used in Ref. [51]. We
choose two matrix multiplication workloads mm1 and mmz2. At the beginning of the experiment,
we carefully select the optimal kernel slice configuration for GPU-TDMh to ensure that it meets all
the task deadlines. From the control periods 0 — 25, we can observe that both tasks are controlled
to the RTR set point as shown in Figure 7(a). At the control period 25, we increase the input size for
both the workloads by 1.5%, and we observe that the RTR exceeds 1 and there are constant deadline
misses as shown in Figure 7(b). One of the significant limitations of GPU-TDMh, as an open-loop
solution, is that it is designed offline and cannot adapt to online changes, such as the arrival of
a new task or when workloads change. For FC-GPU, at control period 25 when the workloads
increase, it adjusts the task rates using the designed MIMO controller and so the task RTRs can
be controlled to their set points. As a result, the deadline miss ratio drops back to 0%, as shown
in Figures 7(c) and 7(d). Experiments 5.1 and 5.2 show that open-loop solutions cannot adapt to
runtime changes, and hence in the next subsequent section, we compare with the two baselines
that use closed-loop control.
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Fig. 7. GPU-TDMh vs. FC-GPU scheduling. (a) shows that GPU-TDMh initially chooses the appropriate
kernel slices to ensure no deadline misses. At the control period 25, both tasks have their response times
deviating from their set points due to workload increase. (b) shows that GPU-TDMh has 100% deadline misses
after the workload increase in the 25th control period. (c) shows that FC-GPU ensures the tasks meet their
set points despite the same workload increase. Figure (d) shows that FC-GPU reduces the deadline misses to
0% after the workload increase.
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Fig. 8. Performance of the Ad-hoc controller for two different step sizes. (a) With a small step size, the
controller output exhibits minimal oscillations and closely approaches the set point; (b) the task period
remains relatively stable. In contrast, (c) a larger step size induces large oscillations around the set point, and
(d) the corresponding task period shows greater variation.

5.3 Comparison with Baseline Closed-Loop Solutions

In this experiment, we compare FC-GPU with two well-designed closed-loop solutions: (1) Adhoc
and (2) SISO. We launch both tasks concurrently as separate processes. We choose a set point of
0.80 for this experiment. We choose two workloads for this experiment, mm (367, 800) and stencil
(200, 400).

Adhoc. Some recent research efforts on GPU scheduling (e.g., [3]) propose heuristic-based
adaptation mechanisms. We refer to these heuristic-based solutions collectively as “Adhoc.” For
the Adhoc controller, if the current RTR in a control period is below the set point, the task rate is
increased by a fixed step size; if the RTR exceeds the set point, the task rate is decreased by that
same step size. Figures 8(a) and 8(b) illustrate the Adhoc controller’s behavior for a step size of
0.045. For this step size, the system remains relatively close to the set point with comparatively
limited oscillations. However, using a larger step size of 0.095 in Figure 8(c) induces oscillations.
Although the Adhoc controller is simple, extensive offline profiling is required to discover an
appropriate step size for every task configuration and GPU platform. Moreover, if hardware or
application characteristics deviate from their profiled values, the predetermined step size can
become suboptimal, resulting in significant performance variance.

SISO. The SISO controller is a commonly used baseline in control systems. It is designed using a
linear model [14]. The SISO controller independently measures the system’s output for each task
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Fig. 9. Comparison of (a) SISO and (c) FC-GPU. (a) SISO exhibits small oscillations near the set points. (b)
and (d) illustrate the task periods of both SISO and FC-GPU. (c) FC-GPU’s MIMO control ensures stable and
accurate convergence for both tasks without requiring extensive offline tuning.

Table 1. Execution Jitter and Response Time Variance for All the Baselines and FC-GPU

Metric Adhoc SISO FC-GPU
mmA; mmA, stencil A; stencil A, || mm stencil || mm stencil

Execution Jitter (%) 2597  11.58 0.31 0.36 24.74 0.48 |[5.15 0.14

Response Time Var (ms?) || 3453.91 362.29  803.47 131.01 4499.55 381.57 || 0.45 0.01

Here A, refers to the step size 0.045 and A, refers to the step size 0.095.

and compares it to the set point. Then it adjusts each task’s period based on these comparisons.
This adjustment reduces the error between the measured output and the set point, keeping the
system’s performance within the desired range.

The variation in the RTR and the task periods for the two tasks is shown in Figures 9(a) and
Figures 9(b). In Figure 9(a), we observe that SISO exhibits small oscillations near its set points. This
is because each SISO controller aims exclusively to stabilize the RTR of a single task and does not
account for contention on shared GPU resources. However, since each SISO controller is designed
to manage the RTR of a single task, it requires precise tuning. Even minor deviations can result in
significant oscillations.

FC-GPU. The proposed solution utilizes a MIMO feedback controller to dynamically adjust the
task rates for both tasks, explicitly accounting for mutual contention. In contrast to the Adhoc and
SISO controllers, FC-GPU takes mutual interference among functions into account. Figures 9(c) and
9(d) display the RTR and periods for the same pair of tasks under FC-GPU’s MIMO control. Both
tasks converge to their desired set points with minimal oscillations. Table 1 shows that FC-GPU has
the smallest task execution jitter and variance in response time. This is because FC-GPU performs
coordinated control using a MIMO controller to adjust task rates. As shown in Equation (26), the
rate of one task is adjusted based on the deviation observed in another. When multiple tasks run
concurrently on the GPU, resource contention occurs. The controller mitigates this by coordinating
the task rates, reducing overlap, and minimizing contention. As a result, kernel execution times
and response times become more stable compared with the baselines.

5.4 Control Accuracy under Different Set Points

In this section, we focus on evaluating the performance of FC-GPU across a range of set points
on the Nvidia and AMD GPUs. Our primary objective is to demonstrate our solution’s real-time
adaptability and responsiveness. As observed in previous experiments, we compute the average
RTR and their standard deviation after the system reaches a steady state to mitigate the influence
of any transient states at the beginning of each run. We test different RTR set points ranging
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Table 2. Mean and Standard Deviation of RTR Across Set Points for Each Task on Nvidia and AMD GPUs

GPU Nvidia GPU AMD GPU
Benchmark dxtc stereo mm hotspot mm flyod stencil srad
Set point |[Mean Std Mean Std Mean Std Mean Std |[Mean Std Mean Std Mean Std Mean Std
0.75 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00{| 0.75 0.01 0.75 0.01 0.75 0.01 0.75 0.01
0.80 0.80 0.00 0.80 0.00 0.80 0.00 0.80 0.00{ 0.80 0.01 0.80 0.01 0.80 0.01 0.80 0.01
0.85 0.85 0.00 0.85 0.00 0.85 0.00 0.85 0.00{ 0.85 0.01 0.85 0.01 0.85 0.00 0.85 0.01
0.90 0.90 0.00 0.90 0.00 0.0 0.00 0.90 0.00( 090 0.00 0.90 0.01 090 0.01 090 0.01

Table 3. Deadline Miss Ratio (%) for All the Tasks
under Different Set Points on the AMD GPU

Benchmark H 0.75 0.80 0.85 0.90

mm 0.00 0.00 0.18 0.17
floyd 0.00 0.40 3.04 3.20
srad 0.00 0.00 0.00 0.00
stencil 0.24 0.47 036 0.36

from 0.75 to 0.90 with an interval of 0.05. We also measure the DMR in every control period. The
deadline-miss ratio is an important metric for real-time systems. When the system’s RTR exceeds 1,
it results in missed deadlines, indicating that the task’s response time exceeds its deadline, which is
also its period. To calculate the deadline miss ratio, we monitor jobs whose response time is longer
than the task’s period and mark these as deadline violations. This process repeats for each control
period to determine the frequency of such violations.

Nvidia GPU. We test four tasks using the following configurations: dxtc (55.3, 600), mm (20, 200),
stereodisparity (25.97, 200), and hotspot (68, 200). Table 2 shows the average RTR variation
across all set points from 0.75 to 0.90 for FC-GPU. As shown in Table 2, all tasks on the Nvidia
GPU converge to their respective set points, as indicated by the mean RTR values closely matching
the target values across all benchmarks. The minimal standard deviations highlight the stability
of the response, indicating negligible oscillations. This showcases the effectiveness of FC-GPU in
accommodating diverse set points while ensuring reliable and consistent convergence for each task
without significant runtime variation. As RTR is controlled to the set point in every case, there are
no missed deadlines across all set points.

AMD GPU. To ensure that our solution is applicable across various GPUs, we validate our
proposed solution on an AMD MI-100 GPU. In this experiment, we apply the RTR control for the
AMD MI-100 while reusing the model coefficients used initially for the Nvidia RTX 3090 GPU.
This demonstrates the robustness of our solution, showing that it can achieve the desired set point
even without performing pole placement for FC-GPU on the MI-100. We choose the four tasks
for this experiment by excluding workloads from the Nvidia benchmark suite. The four tasks are
mm (25,75), srad (25.97,100), floyd (12.6,100), and stencil (51,60). The RTR variation across
all four tasks, with set points ranging from 0.75 to 0.90, is illustrated in Table 2. From the Table, it is
evident that FC-GPU exhibits the average RTR at the respective set points. The standard deviations
are small, indicating minimal oscillation from the set point.

Additionally, we compute the DMR for each set point. Noticeably, the deadline misses gradually
increase as the set points exceed 0.85 but remain less than 3% as shown in Table 3. A closer
inspection of the raw data from each control period on the AMD GPU shows that deadline misses
occasionally occur around the mid-range of the run (e.g., between periods 40 and 60). These arise
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Fig. 10. Online experiments showcasing FC-GPU’s responsiveness to dynamic conditions. Figure (a) shows
that at control period 40, the input to the first workload increases and the controller quickly adjusts the RTR
to its set point. Figure (b) presents the deadline misses for all tasks, with values remaining below 2%. Figure
(c) illustrates the variation in the task periods.

from cache misses and data-loading delays, increasing the overall response time in those intervals.
However, in subsequent periods, the controller adjusts the task rates so that all tasks meet their
RTR set points, ensuring that the DMR returns to 0%.

5.5 Online Workload Variation

Real-time systems commonly undergo workload fluctuations at runtime due to external distur-
bances, environmental variability, or dynamic task arrivals. These variations can significantly affect
performance and responsiveness, potentially causing tasks to exceed their deadlines. To evaluate
how FC-GPU handles such conditions, we conduct two experiments: one with runtime execution
time variations and one with the dynamic arrival of a new task. Both experiments demonstrate
that FC-GPU promptly reduces deadline violations and quickly adapts to set points.

5.5.1 Varying Execution Times. In this experiment, we assess the system’s performance as execu-
tion times fluctuate dynamically during runtime. We focus on the soft real-time video processing sys-
tem utilized for surveillance purposes [39]. Four tasks, mm (25, 80), stereodisparity (25.97, 100),
stencil (51,100), and dxtc (55.3,15), are released simultaneously at time 0. At control period 60,
we increase the input size for mm, which incurs additional memory operations. During this memory
copy, the GPU effectively runs only three tasks, causing a drop in the RTR. In the next control
period, all four tasks resume competition for GPU resources, resulting in a temporary overshoot
of mm’s RTR beyond 1.5, as displayed in Figure 10(a). Figure 10(b) shows the deadline misses for
each task. While dxtc initially exceeds the RTR, FC-GPU quickly readjusts their rates to bring
the RTR below the set point thresholds. The change in task period during each control period is
shown in Figure 10(c). Although the increased workload in the control period 40 causes short-term
deadline violations, the controller mitigates these violations in subsequent control periods. After
stabilization, the DMR remains under 2%.

5.5.2  Dynamic Arrival of Tasks. In real-time systems new tasks can originate from user applica-
tions, system events, or processing sensor inputs [67]. For example, in autonomous vehicles, when
an unexpected obstacle, such as a traffic cone, appears on the road, a vehicle must react swiftly to pre-
vent collision. Thus, the vehicle may promptly schedule a new task to address obstacles and ensure
safe navigation. When this situation occurs, the controller needs to adjust the task rates for all the
tasks within a small number of control periods and ensure there are no significant deadline misses.
As discussed before, FC-GPU can handle dynamic task arrival or departure by having controller
models for different numbers of tasks, and then switch between those controller models at runtime.
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Fig. 11. Online experiments showcasing FC-GPU’s responsiveness to the dynamic arrival of new tasks. Figure
(a) shows that a new task arrives in the system during the control period, 50, and the controller quickly
adjusts the RTR to its set point. Figure (b) presents the deadline misses for all tasks, with values remaining
below 2%. Figure (c) illustrates the variation in the task periods.

We initially run three tasks, mm (25, 50), srad (25.97, 285), and hotspot (12.6, 21), at time 0. So
FC-GPU is initially employing the controller designed for 3 tasks to control their RTR. In control
period 50, a new task arrives, stencil (51,51). When the new task arrives, we send an interrupt
signal to the FC-GPU controller. The controller captures the interrupt signal and reloads the model
parameters designed for the total number of tasks in the system. The controller uses gang scheduling
[14] to quickly reload the model parameters and begin to control the RTR. As Figure 11(e) reveals,
the sudden arrival of stencil briefly inflates the RTRs, followed by rapid convergence toward their
respective set points. Figure 11(f) shows a similar pattern in deadline misses: Once the fourth task
arrives, the DMR increases to 100%, but the controller adjusts the task rates within several control
periods, eventually driving the overall DMR below 2%.

6 Conclusion

Existing GPU real-time scheduling solutions are mostly open-loop and rely on WCET. Traditional
adaptive solutions, such as FCS, are designed for CPU-based real-time tasks. Thus, they cannot
be directly applied to GPU, because GPUs have different and more complex architectures and so
schedulable utilization bounds cannot apply to GPUs yet. In this article, we have presented FC-GPU,
the first Feedback Control GPU scheduling framework for soft real-time embedded systems. To
model the GPU resource contention among tasks, we derive a MIMO system model that captures
the impacts of task rate adaptation on the response times of different tasks. Our extensive hardware
testbed results on both Nvidia and AMD GPUs demonstrate that FC-GPU can provide better real-
time performance with much less deadline miss for GPU tasks, even when the task execution times
significantly increase at runtime.
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